Tuesday, October 25, 2011

Rocket in World War 2

During World War II, fundamentally new forms of weapons technology appeared— the atomic bomb, radar, and guided missiles. Before I resume my narrative, in this chapter, I will write about how the Soviet Union organized work in these three
new fields through a system of three “special committees” organized at the highest
levels. World War II forced us to learn quickly. Despite evacuations, relocations,
reconstruction, building from scratch, and losing factories in the Ukraine and Byelorussia, after two years of war, our aircraft, artillery, tank, and munitions industries were producing such quantities of guns, tanks, and airplanes that the course of the war was radically altered. We overcame the mortal danger of total defeat during the first two years of the war. Beginning in mid-1943, we became hopeful that we would not only save our country, but would also defeat Nazi Germany. However, to achieve this superiority in manpower, the heroism of soldiers and officers was not enough. According to the most optimistic calculations, a year-and-a-half to two years of war lay ahead of us. Despite the human losses—from prewar repressions, the deaths of scientist-volunteers in the militias in 1941, and all those who starved to death during the siege of Leningrad—the Soviet Union retained its intellectual potential, enabling it not only to improve the weapons it had, but also develop fundamentally new weapons.
       Setting up operations to deal with the new challenges required the recruiting of
scientists released from their wartime work routine and necessitated the introduction of a new system of research and development. Soon, the People’s Commissars recognized (and then prompted the members of Stalin’s Politburo to grasp) the need to coordinate all the basic operations in these fields at the state level, conferring on them the highest priority. But priority over what? Over all branches of the defense industry?
      The experience of war had taught us that conventional weapons attain new levels of capability and become much more effective when combined with modern systems, for example, when aircraft are equipped with radar, when anti-aircraft batter.

                            Rockets and People: Creating a Rocket Industry
Three New Technologies, Three State Committees ies fire according to the precise target indications of radar fire control systems rather than the readings of antediluvian sound rangers, when missiles use radio guidance.
      When airplanes could carry atomic bombs, and on and on—the prospects were limitless. During the war it was still too early to limit the production of conventional weapons, but they had to be upgraded according to new trends. That being the case, where were the resources to come from? There remained the tried and true “mobilization economy” method, that is, take everything you could from all the branches of industry responsible for producing conventional civilian goods. In addition, after the defeat of Germany, we could restructure conventional weapons production to benefit new fields and also use the potential of captured German technology.
     During the war, the aircraft, artillery, and tank industries’ mass production process had become highly developed and had accumulated tremendous organizational experience. But what should be the path for new technologies? Should the new industries be entrusted to individual People’s Commissariats? Even before we began our work on rockets in Germany, scientists—nuclear and radio engineers had sensed and had convinced high-ranking officials that such problems required an integrated systematic approach not only in the field of science but also in terms of management. The challenge required a special supervisory agency headed by a Politburo member, who would report directly to Stalin and who would be authorized, unhindered by bureaucratic red tape, to make rapid decisions on the development of the new technology that would be binding for everyone, regardless of departmental subordination.

During World War II, fundamentally new forms of weapons technology appeared—
the atomic bomb, radar, and guided missiles. Before I resume my narrative, in this
chapter, I will write about how the Soviet Union organized work in these three new fields through a system of three “special committees” organized at the highest levels.
      World War II forced us to learn quickly. Despite evacuations, relocations, reconstruction, building from scratch, and losing factories in the Ukraine and Byelorussia, after two years of war, our aircraft, artillery, tank, and munitions industries were producing such quantities of guns, tanks, and airplanes that the course of the war was radically altered. We overcame the mortal danger of total defeat during the first two years of the war. Beginning in mid-1943, we became hopeful that we would not only save our country, but would also defeat Nazi Germany. However, to achieve this superiority in manpower, the heroism of soldiers and officers was not enough.
According to the most optimistic calculations, a year-and-a-half to two years of war lay ahead of us. Despite the human losses—from prewar repressions, the deaths of scientist-volunteers in the militias in 1941, and all those who starved to death during the siege of Leningrad—the Soviet Union retained its intellectual potential, enabling it not only to improve the weapons it had, but also develop fundamentally new weapons.
      Setting up operations to deal with the new challenges required the recruiting of
scientists released from their wartime work routine and necessitated the introduction of a new system of research and development. Soon, the People’s Commissars recognized (and then prompted the members of Stalin’s Politburo to grasp) the need

them the highest priority. But priority over what? Over all branches of the defense industry?
The experience of war had taught us that conventional weapons attain new levels
of capability and become much more effective when combined with modern systems, for example, when aircraft are equipped with radar, when anti-aircraft batter- 1ies fire according to the precise target indications of radar fire control systems rather than the readings of antediluvian sound rangers, when missiles use radio guidance, when airplanes could carry atomic bombs, and on and on—the prospects were limitless.
During the war it was still too early to limit the production of conventional weapons, but they had to be upgraded according to new trends. That being the case, where were the resources to come from?

      There remained the tried and true “mobilization economy” method, that is, take everything you could from all the branches of industry responsible for producing conventional civilian goods. In addition, after the defeat of Germany, we could restructure conventional weapons production to benefit new fields and also use the potential of captured German technology.


        During the war, the aircraft, artillery, and tank industries’ mass production process had become highly developed and had accumulated tremendous organizational experience. But what should be the path for new technologies? Should the new industries be entrusted to individual People’s Commissariats? Even before we began our work on rockets in Germany, scientists—nuclear and radio engineers—had sensed and had convinced high-ranking officials that such problems required an integrated systematic approach not only in the field of science but also in terms of management. The challenge required a special supervisory agency headed by a Politburo member, who would report directly to Stalin and who would be authorized, unhindered by bureaucratic red tape, to make rapid decisions on the development of the new technology that would be binding for everyone, regardless of departmental subordination.

No comments:

Post a Comment